Simple Collision-Based Chemical Logic Gates with Adaptive Computing
نویسندگان
چکیده
We present a method that is capable of implementing information transfer without any rigidly controlled architecture using the light-sensitive Belousov-Zhabotinsky (BZ) reaction system. Chemical wave fragments are injected into a subexcitable area and their collisions result in annihilation, fusion or quasielastic interactions depending on their initial positions. The fragments of excitation both pre and post collision possess a considerable freedom of movement when compared to previous implementations of information transfer in chemical systems. We propose that the collision of such wave fragments can be controlled automatically through adaptive computing. By extension, forms of unconventional computing, i.e., massively parallel non-linear computers, can be realised by such an approach. In this study we present initial results from using a simple evolutionary algorithm to design Boolean logic gates within the BZ system.
منابع مشابه
Chemical logic Gates with adaptive Computing
We present a method that is capable of implementing information transfer without any rigidly controlled architecture using the light-sensitive Belousov-Zhabotinsky (BZ) reaction system. Chemical wave fragments are injected into a subexcitable area and their collisions result in annihilation, fusion or quasi-elastic interactions depending on their initial positions. The fragments of excitation b...
متن کاملOn Digital LSI Circuits Exploiting Collision-Based Fusion Gates
Collision-based reaction-diffusion computing (RDC) represents information quanta as traveling chemical wave fragments on an excitable medium. Although the medium’s computational ability is certainly increased by utilizing its spatial degrees of freedom [2], our interpretation of collision-based RDC in this paper is that wave fragments travel along ‘limited directions’ ‘instantaneously’ as a res...
متن کاملDesign methodologies for compact logic circuits based on collision-based computing
A method of designing compact multiple-input combinational logic circuits is proposed. We show that i) fundamental logic gates can be constructed by a small number of collision-based fusion gates, ii) multiple-input logic gates are constructed in a systematic manner, iii) the number of transistors in specific logic gates constructed by the proposed method is significantly smaller than that of c...
متن کاملLow Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure
Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJNMC
دوره 1 شماره
صفحات -
تاریخ انتشار 2009